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An explicitly correlated variational electronic wave function is obtained for thew3Πg state of the hydrogen
molecule and the Born-Oppenheimer potential energy curve as well as adiabatic corrections are given for
internuclear distances 1e R e 50 au. The electronic dipole transition moments betweenw3Πg and b3Σu,
e3Σu, f3Σu, c3Πu, d3Πu, andk3Πu states for 0.6e R e 20 au are computed. These are the first accurate ab
initio results for the above transitions. Also, the adiabatic vibrational levels are presented forN ) 1.

Introduction

Recently, due to new sophisticated techniques the experi-
mental investigation of excited states of the hydrogen molecule
has shown considerable progress allowing the determination of
energies of the rovibrational states with very high accuracy, often
exceeding 0.05 cm-1 (see e.g. refs 1-13 and references therein).
Hence, accurate theoretical description of the hydrogen molecule
becomes more important and further systematic ab initio
investigations are required. The determination of the electronic
wave functions of the molecule and the Born-Oppenheimer
(BO) energies is often necessary parts of such calculations (see
e.g. refs 3, 14-20). As is well-known, for diatomic two-electron
molecules the variational calculations in the confocal elliptical
coordinates with explicitly correlated electrons allows one to
achieve high accuracy (see e.g. refs 21-29). The data obtained
in this way are also used to verify the accuracy of new methods
developed for the description of larger molecular systems (see
e.g. refs 30-33).

Recently, new accurate ab initio results for a number of triplet
states have been published.28,29 One of these papers28 presents
the Born-Oppenheimer potential energy curves and adiabatic
corrections for three lowest3Πu states (c, d, k) and three lowest
3Πg states (i, r, w); some of these data had been available before
publication. In the second paper,29 three lowest3Σg states (a, h,
g), three lowest3Σu states (b, e, f), three lowest3Πu states (c, d,
k), and two lowest3Πg states (i, r) were computed, or
recomputed, and used to determine the potential energy curves,
adiabatic corrections, and electronic dipole transition moments
between these states with uniform accuracy in a wide range of
internuclear distances.

The present work was undertaken in order to complete the
calculations of the dipole transition moments by adding transi-
tions from the third state of3Πg symmetry, and these results
seem to be the first accurate ab initio calculations of the
transitions moments involvingw3Πg state. The computed
transitions will be used in future in nonadiabatic calculations.

The method of computation of the wave function is briefly
recalled in the following section. There the details of accurate
calculations performed for thew state are given. In the following
sections the results of the calculations of the Born-Oppenheimer

potential, adiabatic corrections, and adiabatic vibrational energies
for N ) 1 are presented. The last section reports results of
calculations of the electronic dipole transition moments between
w3Πg andb3Σu, e3Σu, f3Σu, c3Πu, d3Πu, andk3Πu states.

Atomic units are used throughout unless otherwise stated;
the energy conversion factor to wavenumber is 1 hartree)
219 474.631 cm-1, the reduced mass of the nuclei isµ )
918.0764.

The Wave Function

In this work the generalized James-Coolidge wave function
developed in refs 19, 23, and 34-36 is used to describe the
electronic motion of the hydrogen molecule. It has a form of
an expansion in elliptic coordinates of the two electrons

where

and

Assuming that the internuclear axis coincides with thezaxis,
in this expansion,êj andηj are elliptic coordinates of the two
electrons,xj andyj their Cartesian coordinates, andς ) 2r12/R,
where r12 and R denote the interelectronic and internuclear
distances respectively;Λ denotes the angular momentum
projection quantum number (equal to 0 forΣ states and 1 for
Π states);p ) 0, 1 for g and u symmetry respectively;( in eq
2 refers to singlet and triplet states, respectively;ck, R, Rj , â, âh
are variational parameters and the basis set is defined by the
set of exponentsVk, rk, sk, rjk, sjk.

For thew state, the terms in the expansions (1)-(3) were
chosen from the set of exponents fulfilling the conditions:V e
5 andV + r + s e 8. The selection of terms was performed in
the usual way.26 First, for a short expansion, the nonlinear
parameters were optimized for several values ofR (1, 2, 5, 10,
15). Next, from the above set of exponents the individual terms
were testedsterms which gave the biggest decrease of the
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ψ ) ∑
k

ckGk(1,2) (1)

Gk(1,2)) (x1 + iy1)
Λgk(1,2)( (x2 + iy2)

Λgk(2,1) (2)

gk(1,2)) exp(-Rê1 - Rjê2)ς
Vkê1

rkη1
skê2

rjkη2
sjk {exp(âη1 +

âhη2) + (-1)sk+sjk+Λ+p exp(-âη1 - âhη2)} (3)
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energy were added to the expansion and nonlinear parameters
were reoptimized. This procedure was repeated several times.
When 300 terms were selected, the nonlinear parameters were
optimized for 91 values ofR from the interval between 1 and
50 au and next the selection of terms was continued. As a result,
a 478-term wave function was generated. The phase of this
function is chosen in agreement with the convention adopted
earlier (see e.g. refs 25 and 29).

Born-Oppenheimer Energies and Adiabatic Corrections

The total nonrelativistic Hamiltonian of the molecule in the
center of mass system is

where H0 is the clamped nuclei Hamiltonian andH′ is the
operator depending on the mass of the nuclei. For homonuclear
moleculesH′ can be expressed as a sum of two parts

where

andµ is the reduced mass of the nuclei.
Let the electronic wave function,ψ, be the approximate

solution of the clamped nuclei Schro¨dinger equation. Then, in
the adiabatic approximation, the total molecular wave function,
Φ has the form of a product of a rotational function,ψrot,
adiabatic vibrational function,ø(R), and the electronic wave
function, ψ:

The use of this product in the Schro¨dinger equation with the
total Hamiltonian (4) leads to the well-known one-dimensional
equation for nuclear motion

where

EBO(R) in eq 10 is the Born-Oppenheimer energy and the
second term consists of the centrifugal potential as well as the
adiabatic corrections. According to the convention adopted in
ref 23, this splitting is written as

and allN-independent parts of the expectation value ofH′ are
included in the adiabatic correctionE′(R). The method of
calculation of the adiabatic correction is given in, e.g., ref 23.
Part of this correction connected with the operatorH′2 resolves
itself into the form of the expectation value with electronic wave
function only. For the states withΛ * 0, in the second part,

coming from the operatorH′1, the expectation value must be
evaluated over electronic and rotational coordinates.

The Born-Oppenheimer energies and the adiabatic correc-
tions were computed for 361 internuclear distances. A complete
set of results can be obtained through www.phys.uni.torun.pl/
ftp/publications/ifiz/luwo/h2trans.00. Some of them are pre-
sented in Table 1, where besides the BO energies,EBO(R), and
adiabatic corrections,E′, (in cm-1) the derivatives dEBO/dR,
obtained from the virial theorem, and the dissociation energies,
D (in cm-1), are also given. The accuracy of these calculations
was tested by recomputing some points with real*16 arithmetic.
The energy curve obtained in this work is generally slightly
lower than that computed by Kołos and Rychlewski.28

The results are also displayed in Figures 1 and 2. It is seen
in Figure 1 that besides the typical minimum atR ) 2.0 the
BO potential curve exhibits a very shallow second minimum at
R ) 12.2, located above the dissociation limit.

The total adiabatic corrections are plotted in Figure 2. One
can observe the large corrections at aboutR ) 4.0 andR )

H ) H0 + H′ (4)

H′ ) H′1 + H′2 (5)

H′1 ) - 1
2µ

∆R (6)

H′2 ) - 1
2µ

(∇1 + ∇2)
2 (7)

Φ ) 1
R

ø(R)ψrotψ (8)

{- 1
2µ

d2

dR2
+ U(R) - Ev,N}øv,N ) 0 (9)

U(R) ) EBO(R) + 〈ψψN
rot|H′|ψψN

rot〉 (10)

〈ψψN
rot|H′|ψψN

rot〉 ) E′(R) +
N(N + 1)

2µR2
(11)

TABLE 1: Born-Oppenheimer Energies and Adiabatic
Corrections for the w State of H2

R EBO dEBO/dR D (cm-1) E (cm-1)

1.00 -0.471 882 447 2 -0.521 102 919 -18364.125 559.328
1.20 -0.549 101 828 6 -0.277 338 725 -1416.429 406.426
1.40 -0.590 148 042 9 -0.145 837 911 7592.173 312.915
1.50 -0.602 508 751 1 -0.103 315 690 10305.035 279.202
1.60 -0.611 145 608 6 -0.070 855 614 12200.606 251.454
1.70 -0.616 929 269 5 -0.045 895 767 13469.973 228.342
1.80 -0.620 513 157 9 -0.026 603 166 14256.546 208.894
1.90 -0.622 394 060 1 -0.011 644 480 14669.356 192.387
2.00 -0.622 953 416 9 -0.000 033 729 14792.121 178.269
2.10 -0.622 487 787 3 0.008 965 328 14689.927 166.121
2.20 -0.621 228 799 1 0.015 912 327 14413.611 155.612
2.50 -0.614 343 164 6 0.028 244 717 12902.389 131.620
3.00 -0.598 414 220 0 0.033 327 900 9406.390 109.705
3.50 -0.582 446 661 1 0.029 418 572 5901.916 127.899
3.80 -0.574 493 577 7 0.022 829 342 4156.415 281.871
4.00 -0.570 553 405 4 0.016 772 735 3291.648 426.670
4.20 -0.567 482 978 3 0.014 833 988 2617.767 299.256
4.50 -0.562 867 224 5 0.015 776 261 1604.726 138.467
5.00 -0.555 522 989 5 0.012 734 163 -7.147 104.372
5.50 -0.550 907 644 8 0.004 885 277-1020.099 181.463
5.59 -0.550 549 230 1 0.003 086 772-1098.761 187.614
6.00 -0.550 590 215 9 -0.002 267 901 -1089.766 112.010
6.50 -0.552 022 638 7 -0.002 922 574 -775.386 74.451
7.00 -0.553 306 934 2 -0.002 171 560 -493.515 69.123
7.50 -0.554 201 364 4 -0.001 435 398 -297.211 68.167
7.80 -0.554 577 949 8 -0.001 087 363 -214.560 68.103
8.00 -0.554 775 646 0 -0.000 894 600 -171.170 68.144
8.50 -0.555 125 606 9 -0.000 531 184 -94.363 68.321
9.00 -0.555 328 941 5 -0.000 300 695 -49.736 68.375
9.50 -0.555 441 570 1 -0.000 162 189 -25.017 68.222

10.00 -0.555 500 977 7 -0.000 083 147 -11.979 67.951
10.50 -0.555 530 664 4 -0.000 040 113 -5.463 67.678
11.00 -0.555 544 482 5 -0.000 017 673 -2.430 67.459
11.50 -0.555 550 190 2 -0.000 006 505 -1.178 67.303
12.00 -0.555 551 963 8 -0.000 001 287 -0.788 67.193
12.50 -0.555 551 975 6 0.000 000 892 -0.786 67.115
13.00 -0.555 551 315 2 0.000 001 583 -0.931 67.056
14.00 -0.555 549 768 2 0.000 001 324 -1.270 66.969
15.00 -0.555 548 787 6 0.000 000 642 -1.485 66.901
16.00 -0.555 548 424 5 0.000 000 120 -1.565 66.844
17.00 -0.555 548 476 7 -0.000 000 195 -1.554 66.795
18.00 -0.555 548 763 1 -0.000 000 359 -1.491 66.754
20.00 -0.555 549 605 5 -0.000 000 448 -1.306 66.690
25.00 -0.555 551 589 7 -0.000 000 327 -0.870 66.575
30.00 -0.555 552 910 3 -0.000 000 209 -0.581 66.479
35.00 -0.555 553 751 7 -0.000 000 133 -0.396 66.435
40.00 -0.555 554 289 8 -0.000 000 086 -0.278 66.418
45.00 -0.555 554 640 9 -0.000 000 057 -0.201 66.412
50.00 -0.555 554 876 5 -0.000 000 039 -0.149 66.409
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5.59 and a very small maximum atR ) 8.9. Large corrections
indicate changes in the character of the molecular states due to
avoided crossings and strong nonadiabatic interactions.21-23,29

As was pointed out in ref 28, the maximum atR ) 4.0 is due
to an avoided crossing with a repulsive diabatic curve and the
maximum atR ) 5.59 arises from interaction with a higher
state. The third small maximum atR ) 8.9 can indicate an
avoided crossing with ther3Πg state for which the adiabatic
corrections have a maximum in the same region (atR ) 7.8).

Adiabatic Vibrational Levels

The adiabatic potential (10) obtained in this work was used
in the equation for nuclear motion (9) to calculate the rovibra-
tional energies. The results forN ) 1 are listed in Table 2. In
the first column the vibrational energies,Ev, are given, next,
the dissociation energies,Dv, further, vibrational quanta denoted
as ∆G and in the last column the expectation values ofR-2.
The latter are proportional to the rotational constants:Bv )
〈V|R-2|V〉/2µ. All vibrational states are localized within inner

potential well, the outer well is too shallow to support a bound
state. The presented vibrational energies are calculated in the
adiabatic approximation, in order to compare them with
experimental data (if available) the nonadiabatic calculations
are necessary.

Transition Moments

Dipole transition moments have been computed in several
recent studies.5,16,21,25,29It was shown in ref 25 that the dipole
formula is more suitable for numerical calculations than the
velocity formula. So, here, as in a previous paper,29 the transition
moments,M , between statesψ1 andψ2 were computed from
the dipole formula

Figure 1. Born-Oppenheimer electronic energy curve of thew3Πg

state (in au).

Figure 2. Total adiabatic corrections of thew3Πg state (in cm-1).

TABLE 2: Vibrational Energies, Dissociation
Energies,Vibrational Quanta, and Rotational Constants for
Vibrational Levels in the w State of H2

V Ev Dv ∆G(V + 1/2) 〈R2〉
0 -0.616 687 03 13483.178 2167.372 0.2411
1 -0.606 811 76 11315.806 2036.659 0.2281
2 -0.597 532 06 9279.147 1908.055 0.2155
3 -0.588 838 32 7371.092 1779.916 0.2030
4 -0.580 728 43 5591.176 1646.717 0.1905
5 -0.573 225 43 3944.459 1465.758 0.1770
6 -0.566 546 94 2478.701 1170.484 0.1561
7 -0.561 213 83 1308.216 1055.018 0.1315
8 -0.556 406 81 253.198 0.1288

TABLE 3: Dipole Transition Moments Involving w State of
H2

R wf b w f e wf f w f c w f d w f k

0.60 -0.4155 -1.0498 2.9981 -0.4292 -1.1773 3.8117
0.80 -0.3956 -0.9206 2.3540 -0.4280 -1.1766 3.7998
1.00 -0.3648 -0.7635 1.6774 -0.4269 -1.1814 3.8287
1.25 -0.3160 -0.5663 0.9446 -0.4254 -1.2138 4.0733
1.75 -0.2320 -0.3058 0.1179 -0.4190 -1.2344 4.2649
2.00 -0.2084 -0.2467 -0.0530 -0.4121 -1.2622 4.5103
2.25 -0.1957 -0.2160 -0.1295 -0.4009 -1.2895 4.8064
2.50 -0.1917 -0.2084 -0.1423 -0.3828 -1.3116 5.1549
2.75 -0.1957 -0.2185 -0.1038 -0.3535 -1.3270 5.6043
3.00 -0.2082 -0.2450 -0.0145 -0.3052 -1.3314 1.7941
3.25 -0.2321 -0.2918 0.1452 -0.2215 -1.3140 1.7038
3.50 -0.2743 -0.3715 0.4426 -0.0622 -1.2417 1.9485
3.75 -0.3434 -0.5100 1.0795 0.2784-0.9850 2.5428
4.00 -0.3887 -0.6687 2.3751 0.9016-0.1461 3.7549
4.50 -0.1434 -0.4601 3.9015 1.4049 2.1697 5.8097
5.00 0.0483 -0.1288 -0.0370 1.3225 2.9228 5.8241
5.50 0.2353 0.3730-1.4924 1.1851 2.4656 4.9467
6.00 0.3789 0.9358-1.6405 0.8175 0.9554 4.4064
6.50 0.4161 1.1993-1.4138 0.5115 -0.0766 4.2455
7.00 0.4253 1.3429-1.1985 0.3014 -0.9059 4.1460
7.50 0.4275 1.4496-1.0140 0.1279 -1.8132 3.8889
8.00 0.4267 1.5432-0.8389 -0.0347 -2.5408 3.5181
8.50 0.4236 1.6280-0.6587 -0.1936 -2.8999 3.2814
9.00 0.4187 1.7005-0.4683 -0.3456 -3.0124 3.2190
9.50 0.4126 1.7550-0.2698 -0.4838 -3.0003 3.2601

10.00 0.4059 1.7874-0.0682 -0.6025 -2.9298 3.3458
10.50 0.3993 1.7967 0.1307-0.7002 -2.8350 3.4433
11.00 0.3934 1.7842 0.3203-0.7784 -2.7329 3.5382
11.50 0.3882 1.7544 0.4931-0.8401 -2.6310 3.6248
12.00 0.3838 1.7140 0.6422-0.8886 -2.5325 3.7024
13.00 0.3771 1.6292 0.8602-0.9568 -2.3478 3.8331
15.00 0.3700 1.5302 1.0485-1.0234 -2.0172 4.0269
20.00 0.3741 1.5491 1.0108-0.9829 -1.0428 4.3854

Figure 3. Transition moments involving thew3Πg state (in au).

M ) 〈ψ1|r1 + r2|ψ2〉 (12)
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For Σ f Π transitions, the wave function of theΠ state is
inserted on the left side of eq 12 so the nonvanishing
components of the transition moments areM+ ) (Mx + iMy)/
x2 for the Σ f Π transitions andMz for the Π f Π
transitions. All transitions are computed for internuclear dis-
tances from the interval [0.6-20]. Some of the results are given
in Table 3 and in Figure 3. Full tables are available under file
name www.phys.uni.torun.pl/ftp/publications/ifiz/luwo/h2trans.00.

The transition moments presented in this work have not been
investigated before; together with those considered in ref 29,
they correspond to all possible transitions between three lowest
states of3Σg, 3Σu, 3Πg, and3Πu symmetries. In all those cases,
one can observe an irregular behavior of the moments, in
particular, in the regions where the adiabatic corrections of the
involved states are large. Experience with previously investi-
gated transitions (where the comparison with experimental data
was possible) shows that nonadiabatic interactions are important.
The investigation of these effects is in preparation in this
laboratory.
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