Transition Moments between $w^{\mathbf{3}} \boldsymbol{\Pi}_{\mathrm{g}}$ State and the First Three ${ }^{3} \boldsymbol{\Sigma}_{u}$ and ${ }^{3} \boldsymbol{\Pi}_{u}$ States of the Hydrogen Molecule ${ }^{\dagger}$

Grażyna Staszewska*
Institute of Physics, Nicholas Copernicus University, ul. Grudziadzka 5, 87-100 Toruń, Poland
Received: October 16, 2000; In Final Form: December 14, 2000

Abstract

An explicitly correlated variational electronic wave function is obtained for the $w^{3} \Pi_{\mathrm{g}}$ state of the hydrogen molecule and the Born-Oppenheimer potential energy curve as well as adiabatic corrections are given for internuclear distances $1 \leq R \leq 50$ au. The electronic dipole transition moments between $w^{3} \Pi_{\mathrm{g}}$ and $b^{3} \Sigma_{\mathrm{u}}$, $e^{3} \Sigma_{\mathrm{u}}, f^{3} \Sigma_{\mathrm{u}}, c^{3} \Pi_{\mathrm{u}}, d^{3} \Pi_{\mathrm{u}}$, and $k^{3} \Pi_{\mathrm{u}}$ states for $0.6 \leq R \leq 20$ au are computed. These are the first accurate ab initio results for the above transitions. Also, the adiabatic vibrational levels are presented for $N=1$.

Introduction

Recently, due to new sophisticated techniques the experimental investigation of excited states of the hydrogen molecule has shown considerable progress allowing the determination of energies of the rovibrational states with very high accuracy, often exceeding $0.05 \mathrm{~cm}^{-1}$ (see e.g. refs $1-13$ and references therein). Hence, accurate theoretical description of the hydrogen molecule becomes more important and further systematic ab initio investigations are required. The determination of the electronic wave functions of the molecule and the Born-Oppenheimer (BO) energies is often necessary parts of such calculations (see e.g. refs $3,14-20$). As is well-known, for diatomic two-electron molecules the variational calculations in the confocal elliptical coordinates with explicitly correlated electrons allows one to achieve high accuracy (see e.g. refs 21-29). The data obtained in this way are also used to verify the accuracy of new methods developed for the description of larger molecular systems (see e.g. refs 30-33).

Recently, new accurate ab initio results for a number of triplet states have been published. ${ }^{28,29}$ One of these papers ${ }^{28}$ presents the Born-Oppenheimer potential energy curves and adiabatic corrections for three lowest ${ }^{3} \Pi_{\mathrm{u}}$ states (c, d, k) and three lowest ${ }^{3} \Pi_{\mathrm{g}}$ states (i, r, w); some of these data had been available before publication. In the second paper, ${ }^{29}$ three lowest ${ }^{3} \Sigma_{\mathrm{g}}$ states (a, h, $g)$, three lowest ${ }^{3} \Sigma_{\mathrm{u}}$ states (b, e, f), three lowest ${ }^{3} \Pi_{\mathrm{u}}$ states $(c, d$, k), and two lowest ${ }^{3} \Pi_{\mathrm{g}}$ states (i, r) were computed, or recomputed, and used to determine the potential energy curves, adiabatic corrections, and electronic dipole transition moments between these states with uniform accuracy in a wide range of internuclear distances.

The present work was undertaken in order to complete the calculations of the dipole transition moments by adding transitions from the third state of ${ }^{3} \Pi_{\mathrm{g}}$ symmetry, and these results seem to be the first accurate ab initio calculations of the transitions moments involving $w^{3} \Pi_{g}$ state. The computed transitions will be used in future in nonadiabatic calculations.

The method of computation of the wave function is briefly recalled in the following section. There the details of accurate calculations performed for the w state are given. In the following sections the results of the calculations of the Born-Oppenheimer

[^0]potential, adiabatic corrections, and adiabatic vibrational energies for $N=1$ are presented. The last section reports results of calculations of the electronic dipole transition moments between $w^{3} \Pi_{\mathrm{g}}$ and $b^{3} \Sigma_{\mathrm{u}}, e^{3} \Sigma_{\mathrm{u}}, f^{3} \Sigma_{\mathrm{u}}, c^{3} \Pi_{\mathrm{u}}, d^{3} \Pi_{\mathrm{u}}$, and $k^{3} \Pi_{\mathrm{u}}$ states.

Atomic units are used throughout unless otherwise stated; the energy conversion factor to wavenumber is 1 hartree $=$ $219474.631 \mathrm{~cm}^{-1}$, the reduced mass of the nuclei is $\mu=$ 918.0764.

The Wave Function

In this work the generalized James-Coolidge wave function developed in refs 19,23 , and $34-36$ is used to describe the electronic motion of the hydrogen molecule. It has a form of an expansion in elliptic coordinates of the two electrons

$$
\begin{equation*}
\psi=\sum_{k} c_{k} G_{k}(1,2) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{k}(1,2)=\left(x_{1}+i y_{1}\right)^{\Lambda} g_{k}(1,2) \pm\left(x_{2}+i y_{2}\right)^{\Lambda} g_{k}(2,1) \tag{2}
\end{equation*}
$$

and

$$
\begin{array}{r}
g_{k}(1,2)=\exp \left(-\alpha \xi_{1}-\bar{\alpha} \xi_{2}\right) \varsigma^{v_{k}} \xi_{1}^{r_{k}} \eta_{1}{ }^{s_{k}} \xi_{2}^{\bar{r}_{k}} \eta_{2}{ }^{\bar{s}_{\mathrm{k}}}\left\{\operatorname { e x p } \left(\beta \eta_{1}+\right.\right. \\
\left.\left.\bar{\beta} \eta_{2}\right)+(-1)^{s_{k}+\bar{s}_{k}+\Lambda+p} \exp \left(-\beta \eta_{1}-\bar{\beta} \eta_{2}\right)\right\} \tag{3}
\end{array}
$$

Assuming that the internuclear axis coincides with the z axis, in this expansion, ξ_{j} and η_{j} are elliptic coordinates of the two electrons, x_{j} and y_{j} their Cartesian coordinates, and $\varsigma=2 r_{12} / R$, where r_{12} and R denote the interelectronic and internuclear distances respectively; Λ denotes the angular momentum projection quantum number (equal to 0 for Σ states and 1 for Π states); $p=0,1$ for g and u symmetry respectively; \pm in eq 2 refers to singlet and triplet states, respectively; $c_{k}, \alpha, \bar{\alpha}, \beta, \bar{\beta}$ are variational parameters and the basis set is defined by the set of exponents $v_{k}, r_{k}, s_{k}, \bar{r}_{k}, \bar{s}_{k}$.

For the w state, the terms in the expansions (1)-(3) were chosen from the set of exponents fulfilling the conditions: $v \leq$ 5 and $v+r+s \leq 8$. The selection of terms was performed in the usual way. ${ }^{26}$ First, for a short expansion, the nonlinear parameters were optimized for several values of $R(1,2,5,10$, 15). Next, from the above set of exponents the individual terms were tested-terms which gave the biggest decrease of the
energy were added to the expansion and nonlinear parameters were reoptimized. This procedure was repeated several times. When 300 terms were selected, the nonlinear parameters were optimized for 91 values of R from the interval between 1 and 50 au and next the selection of terms was continued. As a result, a 478 -term wave function was generated. The phase of this function is chosen in agreement with the convention adopted earlier (see e.g. refs 25 and 29).

Born-Oppenheimer Energies and Adiabatic Corrections

The total nonrelativistic Hamiltonian of the molecule in the center of mass system is

$$
\begin{equation*}
H=H_{0}+H^{\prime} \tag{4}
\end{equation*}
$$

where H_{0} is the clamped nuclei Hamiltonian and H^{\prime} is the operator depending on the mass of the nuclei. For homonuclear molecules H^{\prime} can be expressed as a sum of two parts

$$
\begin{equation*}
H^{\prime}=H_{1}^{\prime}+H_{2}^{\prime} \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
H_{1}^{\prime}=-\frac{1}{2 \mu} \Delta_{\mathrm{R}} \tag{6}\\
H_{2}^{\prime}=-\frac{1}{2 \mu}\left(\nabla_{1}+\nabla_{2}\right)^{2} \tag{7}
\end{gather*}
$$

and μ is the reduced mass of the nuclei.
Let the electronic wave function, ψ, be the approximate solution of the clamped nuclei Schrödinger equation. Then, in the adiabatic approximation, the total molecular wave function, Φ has the form of a product of a rotational function, $\psi^{\text {rot }}$, adiabatic vibrational function, $\chi(R)$, and the electronic wave function, ψ :

$$
\begin{equation*}
\Phi=\frac{1}{R} \chi(R) \psi^{\mathrm{rot}} \psi \tag{8}
\end{equation*}
$$

The use of this product in the Schrödinger equation with the total Hamiltonian (4) leads to the well-known one-dimensional equation for nuclear motion

$$
\begin{equation*}
\left\{-\frac{1}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} R^{2}}+U(R)-E_{\mathrm{v}, N}\right\} \chi_{\mathrm{v}, N}=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
U(R)=E^{\mathrm{BO}}(R)+\left\langle\psi \psi_{N}^{\mathrm{rot}}\right| H^{\prime}\left|\psi \psi_{N}^{\mathrm{rot}}\right\rangle \tag{10}
\end{equation*}
$$

$E^{\mathrm{BO}}(R)$ in eq 10 is the Born-Oppenheimer energy and the second term consists of the centrifugal potential as well as the adiabatic corrections. According to the convention adopted in ref 23, this splitting is written as

$$
\begin{equation*}
\left\langle\psi \psi_{N}^{\mathrm{rot}}\right| H^{\prime}\left|\psi \psi_{N}^{\mathrm{rot}}\right\rangle=E^{\prime}(R)+\frac{N(N+1)}{2 \mu R^{2}} \tag{11}
\end{equation*}
$$

and all N -independent parts of the expectation value of H^{\prime} are included in the adiabatic correction $E^{\prime}(R)$. The method of calculation of the adiabatic correction is given in, e.g., ref 23. Part of this correction connected with the operator H_{2}^{\prime} resolves itself into the form of the expectation value with electronic wave function only. For the states with $\Lambda \neq 0$, in the second part,

TABLE 1: Born-Oppenheimer Energies and Adiabatic Corrections for the \boldsymbol{w} State of $\mathbf{H}_{\mathbf{2}}$

R	E^{BO}	$\mathrm{d} E^{\mathrm{BO}} / \mathrm{d} R$	$D\left(\mathrm{~cm}^{-1}\right)$	$E\left(\mathrm{~cm}^{-1}\right)$
1.00	-0.4718824472	-0.521102919	-18364.125	559.328
1.20	-0.5491018286	-0.277338725	-1416.429	406.426
1.40	-0.5901480429	-0.145837911	7592.173	312.915
1.50	-0.6025087511	-0.103315690	10305.035	279.202
1.60	-0.6111456086	-0.070855614	12200.606	251.454
1.70	-0.6169292695	-0.045895767	13469.973	228.342
1.80	-0.6205131579	-0.026603166	14256.546	208.894
1.90	-0.6223940601	-0.011644480	14669.356	192.387
2.00	-0.6229534169	-0.000033729	14792.121	178.269
2.10	-0.6224877873	0.008965328	14689.927	166.121
2.20	-0.6212287991	0.015912327	14413.611	155.612
2.50	-0.6143431646	0.028244717	12902.389	131.620
3.00	-0.5984142200	0.033327900	9406.390	109.705
3.50	-0.5824466611	0.029418572	5901.916	127.899
3.80	-0.5744935777	0.022829342	4156.415	281.871
4.00	-0.5705534054	0.016772735	3291.648	426.670
4.20	-0.5674829783	0.014833988	2617.767	299.256
4.50	-0.5628672245	0.015776261	1604.726	138.467
5.00	-0.5555229895	0.012734163	-7.147	104.372
5.50	-0.5509076448	0.004885277	-1020.099	181.463
5.59	-0.5505492301	0.003086772	-1098.761	187.614
6.00	-0.5505902159	-0.002267901	-1089.766	112.010
6.50	-0.5520226387	-0.002922574	-775.386	74.451
7.00	-0.5533069342	-0.002171560	-493.515	69.123
7.50	-0.5542013644	-0.001435398	-297.211	68.167
7.80	-0.5545779498	-0.001087363	-214.560	68.103
8.00	-0.5547756460	-0.000894600	-171.170	68.144
8.50	-0.5551256069	-0.000531184	-94.363	68.321
9.00	-0.5553289415	-0.000300695	-49.736	68.375
9.50	-0.5554415701	-0.000162189	-25.017	68.222
10.00	-0.5555009777	-0.000083147	-11.979	67.951
10.50	-0.5555306644	-0.000040113	-5.463	67.678
11.00	-0.5555444825	-0.000017673	-2.430	67.459
11.50	-0.5555501902	-0.000006505	-1.178	67.303
12.00	-0.5555519638	-0.000001287	-0.788	67.193
12.50	-0.5555519756	0.000000892	-0.786	67.115
13.00	-0.5555513152	0.000001583	-0.931	67.056
14.00	-0.5555497682	0.000001324	-1.270	66.969
15.00	-0.5555487876	0.000000642	-1.485	66.901
16.00	-0.5555484245	0.000000120	-1.565	66.844
17.00	-0.5555484767	-0.000000195	-1.554	66.795
18.00	-0.5555487631	-0.000000359	-1.491	66.754
20.00	-0.5555496055	-0.000000448	-1.306	66.690
25.00	-0.5555515897	-0.000000327	-0.870	66.575
30.00	-0.5555529103	-0.000000209	-0.581	66.479
35.00	-0.5555537517	-0.000000133	-0.396	66.435
40.00	-0.5555542898	-0.000000086	-0.278	66.418
45.00	-0.5555546409	-0.000000057	-0.201	66.412
50.00	-0.5555548765	-0.000000039	-0.149	66.409
	0			

coming from the operator H_{1}^{\prime}, the expectation value must be evaluated over electronic and rotational coordinates.

The Born-Oppenheimer energies and the adiabatic corrections were computed for 361 internuclear distances. A complete set of results can be obtained through www.phys.uni.torun.pl/ ftp/publications/ifiz/luwo/h2trans.00. Some of them are presented in Table 1, where besides the BO energies, $E^{\mathrm{BO}}(R)$, and adiabatic corrections, E^{\prime}, (in cm^{-1}) the derivatives $\mathrm{d} E^{\mathrm{BO}} / \mathrm{d} R$, obtained from the virial theorem, and the dissociation energies, D (in cm^{-1}), are also given. The accuracy of these calculations was tested by recomputing some points with real*16 arithmetic. The energy curve obtained in this work is generally slightly lower than that computed by Kołos and Rychlewski. ${ }^{28}$

The results are also displayed in Figures 1 and 2. It is seen in Figure 1 that besides the typical minimum at $R=2.0$ the BO potential curve exhibits a very shallow second minimum at $R=12.2$, located above the dissociation limit.

The total adiabatic corrections are plotted in Figure 2. One can observe the large corrections at about $R=4.0$ and $R=$

Figure 1. Born-Oppenheimer electronic energy curve of the $w^{3} \Pi_{g}$ state (in au).

Figure 2. Total adiabatic corrections of the $w^{3} \Pi_{\mathrm{g}}$ state $\left(\mathrm{in} \mathrm{cm}^{-1}\right)$.
TABLE 2: Vibrational Energies, Dissociation Energies, Vibrational Quanta, and Rotational Constants for Vibrational Levels in the \boldsymbol{w} State of \mathbf{H}_{2}

v	E_{v}	D_{v}	$\Delta G(v+1 / 2)$	$\left\langle R_{2}\right\rangle$
0	-0.61668703	13483.178	2167.372	0.2411
1	-0.60681176	11315.806	2036.659	0.2281
2	-0.59753206	9279.147	1908.055	0.2155
3	-0.58883832	7371.092	1779.916	0.2030
4	-0.5072843	5591.176	1646.717	0.1905
5	-0.57322543	3944.459	1465.758	0.1770
6	-0.56654694	2478.701	1170.484	0.1561
7	-0.56121383	1308.216	1055.018	0.1315
8	-0.55640681	253.198		0.1288

5.59 and a very small maximum at $R=8.9$. Large corrections indicate changes in the character of the molecular states due to avoided crossings and strong nonadiabatic interactions. ${ }^{21-23,29}$ As was pointed out in ref 28 , the maximum at $R=4.0$ is due to an avoided crossing with a repulsive diabatic curve and the maximum at $R=5.59$ arises from interaction with a higher state. The third small maximum at $R=8.9$ can indicate an avoided crossing with the $r^{3} \Pi_{\mathrm{g}}$ state for which the adiabatic corrections have a maximum in the same region (at $R=7.8$).

Adiabatic Vibrational Levels

The adiabatic potential (10) obtained in this work was used in the equation for nuclear motion (9) to calculate the rovibrational energies. The results for $N=1$ are listed in Table 2. In the first column the vibrational energies, E_{v}, are given, next, the dissociation energies, D_{v}, further, vibrational quanta denoted as ΔG and in the last column the expectation values of R^{-2}. The latter are proportional to the rotational constants: $B_{\mathrm{v}}=$ $\langle v| R^{-2}|v\rangle / 2 \mu$. All vibrational states are localized within inner

TABLE 3: Dipole Transition Moments Involving \boldsymbol{w} State of \mathbf{H}_{2}

R	$w \rightarrow b$	$w \rightarrow e$	$w \rightarrow f$	$w \rightarrow c$	$w \rightarrow d$	$w \rightarrow k$
0.60	-0.4155	-1.0498	2.9981	-0.4292	-1.1773	3.8117
0.80	-0.3956	-0.9206	2.3540	-0.4280	-1.1766	3.7998
1.00	-0.3648	-0.7635	1.6774	-0.4269	-1.1814	3.8287
1.25	-0.3160	-0.5663	0.9446	-0.4254	-1.2138	4.0733
1.75	-0.2320	-0.3058	0.1179	-0.4190	-1.2344	4.2649
2.00	-0.2084	-0.2467	-0.0530	-0.4121	-1.2622	4.5103
2.25	-0.1957	-0.2160	-0.1295	-0.4009	-1.2895	4.8064
2.50	-0.1917	-0.2084	-0.1423	-0.3828	-1.3116	5.1549
2.75	-0.1957	-0.2185	-0.1038	-0.3535	-1.3270	5.6043
3.00	-0.2082	-0.2450	-0.0145	-0.3052	-1.3314	1.7941
3.25	-0.2321	-0.2918	0.1452	-0.2215	-1.3140	1.7038
3.50	-0.2743	-0.3715	0.4426	-0.0622	-1.2417	1.9485
3.75	-0.3434	-0.5100	1.0795	0.2784	-0.9850	2.5428
4.00	-0.3887	-0.6687	2.3751	0.9016	-0.1461	3.7549
4.50	-0.1434	-0.4601	3.9015	1.4049	2.1697	5.8097
5.00	0.0483	-0.1288	-0.0370	1.3225	2.9228	5.8241
5.50	0.2353	0.3730	-1.4924	1.1851	2.4656	4.9467
6.00	0.3789	0.9358	-1.6405	0.8175	0.9554	4.4064
6.50	0.4161	1.1993	-1.4138	0.5115	-0.0766	4.2455
7.00	0.4253	1.3429	-1.1985	0.3014	-0.9059	4.1460
7.50	0.4275	1.4496	-1.0140	0.1279	-1.8132	3.8889
8.00	0.4267	1.5432	-0.8389	-0.0347	-2.5408	3.5181
8.50	0.4236	1.6280	-0.6587	-0.1936	-2.8999	3.2814
9.00	0.4187	1.7005	-0.4683	-0.3456	-3.0124	3.2190
9.50	0.4126	1.5550	-0.2698	-0.4838	-3.0000	3.2601
10.00	0.4059	1.7874	-0.0682	-0.6025	-2.9298	3.3458
10.50	0.3993	1.7967	0.1307	-0.7002	-2.8350	3.4433
11.00	0.3934	1.7842	0.3203	-0.7784	-2.7329	3.5382
11.50	0.3882	1.7544	0.4931	-0.8401	-2.6310	3.6248
12.00	0.3838	1.7140	0.6422	-0.8886	-2.5325	3.7024
13.00	0.3771	1.6292	0.8602	-0.9568	-2.3478	3.8331
15.00	0.3700	1.5302	1.0485	-1.0234	-2.0172	4.0269
20.00	0.3741	1.5491	1.0108	-0.9829	-1.0428	4.3854

Figure 3. Transition moments involving the $w^{3} \Pi_{\mathrm{g}}$ state (in au).
potential well, the outer well is too shallow to support a bound state. The presented vibrational energies are calculated in the adiabatic approximation, in order to compare them with experimental data (if available) the nonadiabatic calculations are necessary.

Transition Moments

Dipole transition moments have been computed in several recent studies. ${ }^{5,16,21,25,29}$ It was shown in ref 25 that the dipole formula is more suitable for numerical calculations than the velocity formula. So, here, as in a previous paper, ${ }^{29}$ the transition moments, \mathbf{M}, between states ψ_{1} and ψ_{2} were computed from the dipole formula

$$
\begin{equation*}
\mathbf{M}=\left\langle\psi_{1}\right| \mathbf{r}_{1}+\mathbf{r}_{2}\left|\psi_{2}\right\rangle \tag{12}
\end{equation*}
$$

For $\Sigma \rightarrow \Pi$ transitions, the wave function of the Π state is inserted on the left side of eq 12 so the nonvanishing components of the transition moments are $M_{+}=\left(M_{x}+i M_{y}\right) /$ $\sqrt{2}$ for the $\Sigma \rightarrow \Pi$ transitions and M_{z} for the $\Pi \rightarrow \Pi$ transitions. All transitions are computed for internuclear distances from the interval [0.6-20]. Some of the results are given in Table 3 and in Figure 3. Full tables are available under file name www.phys.uni.torun.pl/ftp/publications/ifiz/luwo/h2trans. 00 .

The transition moments presented in this work have not been investigated before; together with those considered in ref 29 , they correspond to all possible transitions between three lowest states of ${ }^{3} \Sigma_{\mathrm{g}},{ }^{3} \Sigma_{\mathrm{u}},{ }^{3} \Pi_{\mathrm{g}}$, and ${ }^{3} \Pi_{\mathrm{u}}$ symmetries. In all those cases, one can observe an irregular behavior of the moments, in particular, in the regions where the adiabatic corrections of the involved states are large. Experience with previously investigated transitions (where the comparison with experimental data was possible) shows that nonadiabatic interactions are important. The investigation of these effects is in preparation in this laboratory.

Acknowledgment. The results presented in this work were obtained with the help of the computer programs written by Professor L. Wolniewicz to whom I am very much indebted for introducing me to these subjects as well as for many valuable comments and discussions. This work was supported by a Polish KBN Grant No. 7T11F 00520.

References and Notes

(1) Osterwalder, A.; Seiler, R.; Merkt, F. J. Chem. Phys. 2000, 113, 7939.
(2) Reinhold: E. Extreme ultraviolet laser spectroscopy of the hydrogen molecule: excited states with large internuclear separation. Ph.D. Thesis, Vrije Universiteit, 2000.
(3) Reinhold: E.; Hogervorst, W.; Ubachs, W.; Wolniewicz, L. Phys. Rev. A 1999, 60, 1258.
(4) Kiyoshima, T.; Sato, S.; Adamson, S. O.; Pazyuk, E. A.; Stolyarov, A. V. Phys. Rev. A 1999, 60, 4494.
(5) Stolyarov, A. V.; Child, M. S. J. Phys. B 1999, 32, 527.
(6) Reinhold: E.; Hogervorst, W.; Ubachs, W. J. Mol. Spectrosc. 1996, 180, 156; Phys. Rev. Lett. 1997, 78, 2543; Chem. Phys. Lett. 1998, 296, 411.
(7) Reinhold: E.; de Lange, A.; Hogervorst, W.; Ubachs, W. J. Chem. Phys. 1998, 109, 9772.
(8) Stolyarov, A. V.; Pupyshev, V. I.; Child, M. S. J. Phys. B 1997, 30, 3077.
(9) Jozefowski, L.; Ottinger, Ch.; Rox, T. J. Mol. Spectrosc. 1994, 163, 381.
(10) Ottinger, Ch.; Rox, T.; Sharma, A. J. Mol. Spectrosc. 1994, 163, 414.
(11) Kiyoshima, T.; Sato, H. Phys. Rev. A 1993, 48, 4771.
(12) Balakrishnan, A.; Smith, V.; Stoicheff, B. P. Phys. Rev. Lett. 1992, 68, 2149; Phys. Rev. A 1994, 49, 2460.
(13) Gilligan, J. M.; Eyler, E. E. Phys. Rev. A 1992, 46, 3676.
(14) Quadrelli, P.; Dressler, K.; Wolniewicz, L. J. Chem. Phys. 1990, 92, 7461.
(15) Schins, J. M.; Siebbeles, L. D. A.; Los, J.; van der Zande, W. J. Phys. Rev. A 1991, 44, 4162.
(16) Schins, J. M.; Siebbeles, L. D. A.; Los, J.; van der Zande, W. J.; Rychlewski, J.; Koch, H. Phys. Rev. A 1991, 44, 4171.
(17) Wolniewicz, L.; Dressler, K. J. Chem. Phys. 1994, 100, 444.
(18) Yu, S.; Dressler, K. J. Chem. Phys. 1994, 101, 7692.
(19) Wolniewicz, L. J. Chem. Phys. 1995, 103, 1792.
(20) Guberman, S. L.; Dalgarno, A. Phys. Rev. A 1992, 45, 2784.
(21) Kołos, W.; Rychlewski, J. J. Mol. Spectrosc. 1990, 143, 212.
(22) Kołos, W.; Rychlewski, J. J. Mol. Spectrosc. 1994, 166, 12.
(23) Wolniewicz, L. J. Mol. Spectrosc. 1995, 169, 329.
(24) Kołos, W.; Rychlewski, J. J. Mol. Spectrosc. 1996, 177, 146.
(25) Wolniewicz, L. J. Mol. Spectrosc. 1996, 180, 398.
(26) Wolniewicz, L. J. Chem. Phys. 1998, 108, 1499.
(27) Orlikowski, T.; Staszewska, G.; Wolniewicz, L. Mol. Phys. 1999, 96, 1445.
(28) Kołos, W.; Rychlewski, J. Comput. Methods Sci. Technol. 1999, 5, 39.
(29) Staszewska, G.; Wolniewicz, L. J. Mol. Spectrosc. 1999, 198, 416.
(30) Ross, S. C.; Jungen, Ch. Phys. Rev. A 1994, 50, 4618.
(31) Cencek, W.; Komasa, J.; Rychlewski, J. Chem. Phys. Lett. 1994, 246, 417.
(32) Detmer, T.; Schmelcher, P.; Cederbaum, L. S. J. Chem. Phys. 1998, 109, 9694.
(33) Matzkin, A.; Jungen, Ch.; Ross, S. C. Phys. Rev. A 1998, 58, 4462.
(34) Kołos, W.; Wolniewicz, L. J. Chem. Phys. 1966, 45, 509.
(35) Wolniewicz, L. Can. J. Phys. 1976, 54, 672.
(36) Kołos, W.; Rychlewski, J. J. Mol. Spectrosc. 1982, 91, 128.

[^0]: \dagger Part of the special issue "Aron Kupperman Festschrift".

 + E-mail address: grasta@phys.uni.torun.pl.

